The availability of Martian atmospheric data provided by several Martian missions broadened the opportunity to investigate and study the conditions of the Martian ionosphere. As such, ionospheric models play a crucial part in improving our understanding of ionospheric behavior in response to different spatial, temporal, and space weather conditions. This work represents an initial attempt to construct an electron density prediction model of the Martian ionosphere using machine learning. The model targets the ionosphere at solar zenith ranging from 70 to 90 degrees, and as such only utilizes observations from the Mars Global Surveyor mission. The performance of different machine learning methods was compared in terms of root mean square error, coefficient of determination, and mean absolute error. The bagged regression trees method performed best out of all the evaluated methods. Furthermore, the optimized bagged regression trees model outperformed other Martian ionosphere models from the literature (MIRI and NeMars) in finding the peak electron density value, and the peak density height in terms of root-mean-square error and mean absolute error.
translated by 谷歌翻译
电离层中存在的电子密度不规则性会引起全球导航卫星系统(GNSS)信号的显着波动。信号功率的波动称为振幅闪烁,可以通过S4指数进行监测。当实时数据不可用时,基于历史S4索引数据的幅度闪烁的严重程度是有益的。在这项工作中,我们研究了使用单个GPS闪烁监测接收器中使用历史数据来训练机器学习(ML)模型的可能性参数。评估了六种不同的ML型号,其中包装的树模型是其中最准确的,使用平衡数据集获得了预测准确性$ 81 \%$,使用不平衡数据集获得了$ 97 \%$ $。
translated by 谷歌翻译
这项工作提出了诸如卷积神经网络(CNN),长短期记忆(LSTM),门控复发单元(GRU),它们的混合动力和情绪的浅学习分类器等深度学习模型的性能的详细比较阿拉伯语评论分析。另外,比较包括最先进的模型,例如变压器架构和阿拉伯的预先训练模型。本研究中使用的数据集是多方面的阿拉伯语酒店和书评数据集,这些数据集是阿拉伯评论的一些最大的公共数据集。结果表明,二元和多标签分类的浅层学习表现优于浅层学习,与文献中报告的类似工作的结果相比。结果中的这种差异是由数据集大小引起的,因为我们发现它与深度学习模型的性能成比例。在准确性和F1分数方面分析了深层和浅层学习技术的性能。最好的浅学习技术是随机森林,后跟决策树,以及adaboost。深度学习模型类似地使用默认的嵌入层进行,而变压器模型在增强Arabert时表现最佳。
translated by 谷歌翻译
Compared to regular cameras, Dynamic Vision Sensors or Event Cameras can output compact visual data based on a change in the intensity in each pixel location asynchronously. In this paper, we study the application of current image-based SLAM techniques to these novel sensors. To this end, the information in adaptively selected event windows is processed to form motion-compensated images. These images are then used to reconstruct the scene and estimate the 6-DOF pose of the camera. We also propose an inertial version of the event-only pipeline to assess its capabilities. We compare the results of different configurations of the proposed algorithm against the ground truth for sequences of two publicly available event datasets. We also compare the results of the proposed event-inertial pipeline with the state-of-the-art and show it can produce comparable or more accurate results provided the map estimate is reliable.
translated by 谷歌翻译
With the advent of deep learning application on edge devices, researchers actively try to optimize their deployments on low-power and restricted memory devices. There are established compression method such as quantization, pruning, and architecture search that leverage commodity hardware. Apart from conventional compression algorithms, one may redesign the operations of deep learning models that lead to more efficient implementation. To this end, we propose EuclidNet, a compression method, designed to be implemented on hardware which replaces multiplication, $xw$, with Euclidean distance $(x-w)^2$. We show that EuclidNet is aligned with matrix multiplication and it can be used as a measure of similarity in case of convolutional layers. Furthermore, we show that under various transformations and noise scenarios, EuclidNet exhibits the same performance compared to the deep learning models designed with multiplication operations.
translated by 谷歌翻译
Recurrent neural networks (RNN) are the backbone of many text and speech applications. These architectures are typically made up of several computationally complex components such as; non-linear activation functions, normalization, bi-directional dependence and attention. In order to maintain good accuracy, these components are frequently run using full-precision floating-point computation, making them slow, inefficient and difficult to deploy on edge devices. In addition, the complex nature of these operations makes them challenging to quantize using standard quantization methods without a significant performance drop. We present a quantization-aware training method for obtaining a highly accurate integer-only recurrent neural network (iRNN). Our approach supports layer normalization, attention, and an adaptive piecewise linear (PWL) approximation of activation functions, to serve a wide range of state-of-the-art RNNs. The proposed method enables RNN-based language models to run on edge devices with $2\times$ improvement in runtime, and $4\times$ reduction in model size while maintaining similar accuracy as its full-precision counterpart.
translated by 谷歌翻译
GTFLAT, as a game theory-based add-on, addresses an important research question: How can a federated learning algorithm achieve better performance and training efficiency by setting more effective adaptive weights for averaging in the model aggregation phase? The main objectives for the ideal method of answering the question are: (1) empowering federated learning algorithms to reach better performance in fewer communication rounds, notably in the face of heterogeneous scenarios, and last but not least, (2) being easy to use alongside the state-of-the-art federated learning algorithms as a new module. To this end, GTFLAT models the averaging task as a strategic game among active users. Then it proposes a systematic solution based on the population game and evolutionary dynamics to find the equilibrium. In contrast with existing approaches that impose the weights on the participants, GTFLAT concludes a self-enforcement agreement among clients in a way that none of them is motivated to deviate from it individually. The results reveal that, on average, using GTFLAT increases the top-1 test accuracy by 1.38%, while it needs 21.06% fewer communication rounds to reach the accuracy.
translated by 谷歌翻译
With the rise of AI in recent years and the increase in complexity of the models, the growing demand in computational resources is starting to pose a significant challenge. The need for higher compute power is being met with increasingly more potent accelerators and the use of large compute clusters. However, the gain in prediction accuracy from large models trained on distributed and accelerated systems comes at the price of a substantial increase in energy demand, and researchers have started questioning the environmental friendliness of such AI methods at scale. Consequently, energy efficiency plays an important role for AI model developers and infrastructure operators alike. The energy consumption of AI workloads depends on the model implementation and the utilized hardware. Therefore, accurate measurements of the power draw of AI workflows on different types of compute nodes is key to algorithmic improvements and the design of future compute clusters and hardware. To this end, we present measurements of the energy consumption of two typical applications of deep learning models on different types of compute nodes. Our results indicate that 1. deriving energy consumption directly from runtime is not accurate, but the consumption of the compute node needs to be considered regarding its composition; 2. neglecting accelerator hardware on mixed nodes results in overproportional inefficiency regarding energy consumption; 3. energy consumption of model training and inference should be considered separately - while training on GPUs outperforms all other node types regarding both runtime and energy consumption, inference on CPU nodes can be comparably efficient. One advantage of our approach is that the information on energy consumption is available to all users of the supercomputer, enabling an easy transfer to other workloads alongside a raise in user-awareness of energy consumption.
translated by 谷歌翻译
DeepAngle is a machine learning-based method to determine the contact angles of different phases in the tomography images of porous materials. Measurement of angles in 3--D needs to be done within the surface perpendicular to the angle planes, and it could become inaccurate when dealing with the discretized space of the image voxels. A computationally intensive solution is to correlate and vectorize all surfaces using an adaptable grid, and then measure the angles within the desired planes. On the contrary, the present study provides a rapid and low-cost technique powered by deep learning to estimate the interfacial angles directly from images. DeepAngle is tested on both synthetic and realistic images against the direct measurement technique and found to improve the r-squared by 5 to 16% while lowering the computational cost 20 times. This rapid method is especially applicable for processing large tomography data and time-resolved images, which is computationally intensive. The developed code and the dataset are available at an open repository on GitHub (https://www.github.com/ArashRabbani/DeepAngle).
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译